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Abstract

We analyse the role of cointegration for hedging an asset using other assets, when
the prices are generated by a cointegrated vector autoregressive model allowing for
stationary martingale errors. We first note that if the price of the asset is nonsta-
tionary, the risk of keeping the asset diverges. We then derive the minimum variance
hedging portfolio as a function of the holding period, h, and show that it approaches
a cointegrating relation for large h, thereby giving a serious reduction in the risk. We
then take into account the expected return and find the portfolio that maximizes the
Sharpe ratio. We show that it also approaches a cointegration portfolio, with weights
depending on the price of the portfolio. We illustrate the finding with a data set of
electricity prices which are hedged by fuel prices. The main conclusion of the paper
is that for optimal hedging, one should exploit the cointegrating properties for long
horizons, but for short horizons more weight should be put on remaining part of the
dynamics.
We then analyse the situation with some heteroscedasticity, and find the same

results provided one applies the average conditional variance of the return to measure
the risk.
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1 Introduction, some notation and summary
1.1 Motivation for the problem investigated

The use of cointegration for analyzing financial data is well established over the last 20 years.
The problem of price discovery is discussed by Hasbrouck (1995), Lehmann (2002), de Jong
and Schotman (2010), and Grammig, Melvin, and Schlag (2005). Gatev, Goetzmann, and
Rouwe (2006) study pairs trading, and continuous time models with a heteroscedastic error
process are developed by Duan and Pliska (2004) and Nakajima and Ohashi (2011). Alexan-
der (1999) studied optimal hedging using cointegration, see also Juhl, Kawaller, Koch (2012).
The idea of a minimum variance portfolio dates back to the seminal paper by Markowitz
(1952) and has since been explored and extended in both the financial and econometric
literature, see for instance Grinold and Kahn (1999).
In general, the hedging methods can be divided in two classes: static and dynamic

methods. The static hedging techniques assume that the hedging portfolio is selected, given
information available in period t, and remains unchanged during the entire holding period
t+1, . . . , t+h. This is opposed to the dynamic hedging methods which allows for rebalancing
the portfolio during the holding period, but we are only concerned with static hedging.
Under the assumption of stationary martingale errors and constant volatility, we derive

the optimal hedging ratios for horizon h, which can determined by a regression of h period
returns yt+h − yt on information at time t and a constant. By analyzing the limit of the
relevant product moments, we discuss the role of cointegration for the optimal hedging
portfolio, when prices are assumed to follow a cointegrated vector autoregressive model
(CVAR) with conditionally heteroscedastic error terms. The role of cointegration for hedging
was analysed by Juhl, Kawaller, and Koch (1011). They considered a special case of the
CVAR and we want in this paper to generalize their results obtained to a CVAR with more
lags and more cointegrating relations and allow for a some degree of heteroscedasticity in
the martingale error term.

1.2 Content of the paper

We start with a simple example of a cointegrating regression model, which relates the hedged
asset to the hedging assets via a cointegrating relation. In this example the hedging assets
are assumed strongly exogenous and modelled by random walks to facilitate the derivations.
We then turn to the general CVAR with an error term which is a stationary martingale
difference sequence with constant volatility,. We find expressions for conditional mean and
variance of the h period return, and use these to analyze the role of cointegration.
For a fixed horizon portfolio we note that because of the nonstationarity of prices, the risk

will in general diverge as a function of the holding period. In the presence of cointegration,
however, the optimal portfolio has a bounded risk. We find that for long horizons the
optimal hedging portfolio approaches a cointegrating portfolio, whereas for shorter horizons
the short-run dynamics and the error variance has to be taken into account.
When we allow for a more general nonstationary martingale difference error term with

heteroscedasticity, the results are different, if we measure risk by conditional variance. The
assumption that the average volatility converges implies that one can only derive similar
results by using the average conditional variance as a measure of risk.
Finally we analyze some daily data for futures of electricity prices, and show how the

2



risk of the optimal hedging ratios change with h and compare the optimal hedging portfolio
with the cointegrating portfolio.

1.3 Main conclusion

Our main conclusion is that in the case of stationary martingale difference errors with con-
stant volatility, both the optimal hedging portfolio and the maximum Sharpe ratio portfolio
converge to cointegrating relations for large h, which we find explicitly and characterize as
the minimum variance cointegrating portfolio normalized on η1 = 1, and as the limit of the
Sharpe optimal cointegrating portfolio respectively.
We conclude that cointegration plays an important role in hedging. It allows for the

possibility that the hedging portfolio has a risk that is bounded in the horizon h, as opposed
to the unhedged risk. As important is the result that for moderate horizons, it is important
not to use the cointegrating portfolio, but to use the optimal hedging portfolio which in-
terpolates between the short and long-horizon cointegrating portfolio. If we allow for some
degree of volatility, the same results can not be proved, unless we replace the conditional
variance of the returns by the conditional variance average over shorter horizons. All proofs
are given in the Appendix.

2 A simple example of hedging cointegrated variables
This section analyses a simple model, where the hedged asset is cointegrated with the hedging
assets, modelled as random walks. We compare the optimal hedging portfolio with the
unhedged position in the first asset, and show how we find a substantial reduction in risk,
due to the nonstationarity of the asset prices.

2.1 The cointegrating regression model

We first consider a simple model for the variables in the example in Section 5. This model is
too simple to describe the data, which we analyze in Section 5, and is used here only because
the derivations are simpler in this case. Thus, pt is the price of a future on electricity and
there are three "fuels", coal, gas and the price of CO2 permits collected in y2t. We consider
a cointegrating regression model, where the endogenous variable y1t = pt cointegrates with
coal, gas, and CO2, modelled as exogenous random walks,

y1t = γ′y2t + u1t,

y2t = y2,t−1 + u2t,
(1)

where ut = (u1t, u
′
2t)
′ are here assumed independent identically distributed random errors

with mean zero and variance split accordingly Ψ = (Ψij, i, j = 1, 2). We hold one unit of
electricity, and want to hedge by going short in the fuels in the hope of reducing the risk
associated with the prices.
For the regression model (1) is it easy to estimate the optimal h period portfolio, by

regression of y1,t+h − yt on y2,t+h − y2t, or based on the product moment for the stationary
process yt+h − yt

Σ̂h = (T − h)−1
T−h∑
t=1

(yt+h − yt)(yt+h − yt)′. (2)

The idea of the paper is to find an expression for the expectation or probability limit of Σ̂h,
in order to analyse the role of cointegration.
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We find from model equations (1), that y2t is a random walk in n− 1 dimensions. This
is used to find a representation of y1,t+h and y2,t+h as functions of y2t and the errors

y2,t+h − y2t = u2,t+1 + · · ·+ u2,t+h, (3)

y1,t+h − y1t = γ′y2,t+h − y1t + u1,t+h = −(y1,t − γ′y2t) + γ′
h∑
i=1

u2,t+i + u1,t+h. (4)

This representation is now used to find the conditional expected return and conditional
variance of yt+h − yt given yt,

µh = Et(yt+h − yt) =

(
−(y1t − γ′y2t)

0

)
, (5)

Σh = Vt(yt+h − yt) =

(
hγ′Ψ22γ + γ′Ψ21 + Ψ12γ + Ψ11 hγ′Ψ22 + Ψ12

hΨ22γ + Ψ21 hΨ22

)
. (6)

The best linear predictor of y1,t+h given (y2,t+h, yt) is

γ∗h = Σ−1h22Σh21 = (hΨ22)
−1(hΨ22γ + Ψ21) = γ + h−1Ψ−122 Ψ21.

and the optimal hedging portfolio becomes

η∗h =

(
1

−Σ−1h22Σh21

)
. (7)

The conditional expected return and risk are

η∗′h µh = µh1 − Σ−1h22Σh21µh2, (8)

η∗′h Σ−1h η∗h = Σh11 − Σh12Σ
−1
h22Σh21. (9)

In order to interpret the consequences of these results, note that holding the first asset
for h periods leads to a diverging risk for h→∞,

V art(y1,t+h) = Ψ11 + hγ′Ψ22γ + Ψ12γ + γ′Ψ21 →∞,

because y1t is driven by the nonstationary random walk y2t. If we use the optimal hedging
portfolio, however, we find the increasing but converging risk

V art(η
∗′
h y1,t+h) = Ψ11 − h−1Ψ12Ψ

−1
22 Ψ21 → Ψ11.

Thus for large h, one obtains a substantial reduction in risk by hedging.
The conditional expected return of holding the first asset is the same as the conditional

expected return of the hedged asset, so in this case it is enough to compare the risks.
Two assets modelled by correlated random walks are substitutes. In the extreme case

that two assets are fully correlated, having only one of them as hedging asset, is enough for
an optimal portfolio. The expression for the optimal risk Ψ11 − h−1Ψ12Ψ

−1
22 Ψ21 shows that

the more hedging assets are used, the smaller is the risk.
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3 Optimal hedging in the CVAR with stationary martingale dif-
ference error terms

The results are formulated in Theorem 2 for the cointegrated VAR model with two lags

∆yt = α(β′yt−1 − ξ) + Ξ∆yt−1 + εt. (10)

It is only a question of a more elaborate notation to handle the case of more lags using the
companion form.
We formulate the assumptions on the data generating process, see Johansen (1996), and

define the characteristic polynomial for the lag two model, Ψ(z) = (1−z)In−Πz−Ξz(1−z),
see (10). For any n×m matrix, a, of rank m < n we denote by a⊥ an n× (n−m) matrix
of rank n−m for which a′a⊥ = 0.

Assumption 1 We assume that the roots of det Ψ(z) = 0 satisfy |z| > 1 or z = 1, and that
Π = αβ′ where α and β are n×r matrices of full rank. We further assume that α′⊥(In−Ξ)β⊥
has full rank and define the matrix

C = β⊥(α′⊥(In − Ξ)β⊥)−1α′⊥.

Next we formulate the assumptions on the stationary error term, but discuss a weaker
assumption in Section 4.

Assumption 2 The innovations, εt, form a stationary martingale difference sequence with
respect to a filtration Ft, t = · · · − 1, 0, 1, . . . , satisfying

Et(εt+1) = E(εt+1|Ft) = 0, E|εt|4 ≤ c <∞, (11)

and with constant volatility
Et(εt+1ε

′
t+1|Ft) = Ω > 0. (12)

With this assumption we find that yt is a nonstationary process, whereas ∆yt and β′yt
are stationary. Moreover we can find an expression for the conditional mean and variance of
the h period return given information at time t, and therefore analyze analytically the role
of cointegration for the optimal h period portfolio.
It is convenient to formulate the optimal hedging problem in the same way as Markowitz

(1952) formulated the optimal portfolio choice, as a constrained optimization problem. We
define µt,h = Et(yt+h−yt) andΣh = V art(yt+h) and want to minimize the conditional variance
given information at time t of η′yt+h, that is η′Σhη, under the constraint that a′η = 1, for
some vector a ∈ Rn. In particular for a = en1 = (1, 0′n−1)

′ we find the optimal hedging
portfolio and for = µt,h we find the optimal portfolio in the sense of Markowitz, which also
maximizes the Sharpe ratio.
The solution is easily found by solving the Lagrange multiplier problem

∂

∂η
: η′Σhη − 2λ(η′a− 1) = 0,
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giving
ηopt = Σ−1h a/a′Σ−1h a, (13)

with risk
η′optΣhηopt = (a′Σ−1h a)−1.

For the case a = en1, we can find a different expression using

In = ΣhΣ
−1
h =

(
Σh11 Σh12

Σh21 Σh22

)(
Σ11
h Σ12

h

Σ21
h Σ22

h

)
,

where Σh22 is (n− 1)× (n− 1), such that Σh21Σ
11
h + Σh22Σ

21
h = 0, or

Σ−1h22Σh21 = −Σ21
h /Σ

11
h .

In this case we denote the optimal portfolio η∗h, and find

η∗h = Σ−1h en1/e
′
n1Σ

−1
h en1 =

(
Σ11
h

Σ21
h

)
/Σ11

h =

(
1

Σ21
h /Σ

11
h

)
=

(
1

−Σ−1h22Σh21

)
. (14)

Thus, the optimal choice is found as a population regression of y1,t+h−y1,t on (y2,t+h, . . . , yn,t+h)
correcting for information at time t and a constant. It turns out that the formulation (13)
is more convenient for the asymptotic analysis, which reduces to finding the limit of Σ−1h for
h→∞.
We shall use the following elementary lemma for the asymptotic analysis.

Lemma 1 Let Θh = hβ⊥Φhβ
′
⊥ + Ψh for Θh and Φh positive definite symmetric possibly

stochastic matrices, and assume that Ψh = OP (1), β′Ψhβ
P→ Γ > 0, and Φh

D→ Φ > 0 a.s.,
then

Θ−1h
P→ βΓ−1β′.

We first find a representation of the process for the lag one model, and use that to
calculate the conditional variance, Σh, and conditional mean return, µt,h, and their limits.

Theorem 1 Let Assumptions 1 and 2 be satisfied, and let yt ∈ Rn, t = 1, . . . , T, be given by

∆yt = α(β′yt−1 − ξ) + εt. (15)

The process yt+h − yt has the representation as function of errors, εt+1, . . . , εt+h, and
initial values, yt,

yt+h − yt =
h−1∑
i=0

{C + α(β′α)−1ρiβ′}εt+h−i + α(β′α)−1(ρh − Ir)(β′yt − ξ). (16)

The conditional mean and variance are therefore

µt,h = Et(yt+h − yt) = α(β′α)−1(ρh − Ir)(β′yt − ξ), (17)

Σh = V art(yt+h − yt) =
h−1∑
i=0

[C + α(β′α)−1ρiβ′]Ω[C ′ + βρ′i(α′β)−1α′]. (18)
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Finally for h→∞

µt,h → −α(β′α)−1(β′yt − ξ), (19)

Σ−1h → β(V ar(β′yt))
−1β′. (20)

In order to formulate the main result it is convinient to normalize the cointegrating
vectors. Because we are interested in hedging the first asset and investigate the influence of
cointegration, we assume that there exists a cointegrating relation of the form y1t + γ′1y2t.
By taking linear combinations of the cointegrating relations, we can eliminate the first asset
from the remaining relations and assume, without loss of generality, that

β =

(
1 0
γ1 γ2

)
, (21)

for γ1 ∈ Rn−1 and γ2 ∈ R(n−1)×(r−1).
We next formulate the main result for the hedging problem in the CVAR with stationary

martingale difference sequence as error term and two lags.

Theorem 2 Let yt be given by the model (10) and let Assumption 1 and 2 hold.
For h = 1, we find Σ1 = Etεt+1ε

′
t+1 = Ω, µt,1 = α(β′yt − ξ) + Ξ∆yt and the optimal

hedging portfolio is η∗′1 = (1,−Ω12Ω
−1
22 ), which has conditional mean return and risk

η∗′1 µt,1 = (1,−Ω12Ω
−1
22 )(α(β′yt − ξ) + Ξ∆yt), (22)

η∗′1 Σ1η
∗
1 = Ω11 − Ω12Ω

−1
22 Ω21. (23)

For h→∞, the limiting optimal hedging portfolio is

η∗h =
Σ−1h en1

e′n1Σ
−1
h en1

→ βΓ−1β′en1
e′n1βΓ−1β′en1

= β

(
1

−Γ−122 Γ21

)
=

(
1

γ1 − γ2Γ−122 Γ21

)
, (24)

where Γ = V ar(β′yt). The limits for h→∞ of the conditional mean return and risk are

η∗′h µt,h → −(1,−Γ12Γ
−1
22 )(β′yt − ξ), (25)

η∗′h Σhη
∗
h → Γ−111 = Γ11 − Γ12Γ

−1
22 Γ21. (26)

Finally, the fraction of explained variation is given by

R2h = Σ−111hΣ12hΣ
−1
22hΣ21h → 1. (27)

The interpretation of these results is the following. For h = 1, the optimal portfolio
depends only on the conditional error variance Etεt+1ε′t+1 = Ω, assumed constant, and
cointegration plays no role. The minimal variance is Ω11 − Ω12Ω

−1
22 Ω21 < Ω11, where the

latter is the variance of the unhedged asset.
For any h the risk of the optimal portfolio is

(Σ11
h )−1 = Σh11 − Σh21Σ

−1
h22Σh21 < Σh11, (28)
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where Σh11 is the risk of the unhedged portfolio, which diverges to infinity for large h, if the
price of asset one is nonstationary, whereas the risk of the optimal portfolio stays bounded,
so a lot is gained by hedging. We also see that R2h −→ 1, see Juhl, Kawaller, and Koch (2012,
p. 838), for a discussion of R2 > 0.8 as a necessary condition to qualify for hedge accounting
treatment. By the optimal hedging portfolio, the risk is reduced by Σh12Σ

−1
h22Σh21 > 0, see

(28), and the mean return is changed, but there is no simple comparison between the mean
returns for h = 1 and the limit for h→∞. We note that the limit of the optimal portfolio
is a cointegrating portfolio, that is, a linear combination of the columns of β, see (24). We
next analyse cointegrating portfolios.

Theorem 3 Under Assumptions 1 and 2, the optimal cointegrating hedging portfolio and
its limit are

η∗h,coint =
β(β′Σhβ)−1β′er1
e′r1β(β′Σhβ)−1β′er1

→ β

(
1

−Γ−122 Γ21

)
. (29)

Note that the limit is the same as in (24) and therefore the limits of the conditional return
η∗′h,cointµt,h and conditional variance η

∗′
h,cointΣhη

∗′
h,coint are given in (25) and (26).

Note that with the parametrization (21), the parameter γ1 is not identified, because we
could choose the parameters,

βκ = βκ =

(
1 0
γ1 γ2

)(
1 0
κ1 κ2

)
=

(
1 0

γ1 + γ2κ1 γ2κ2

)
,

and ακ = ακ′−1 where κ is r × r of full rank. Then αβ′ = ακβ
′
κ, and that would not change

the cointegrating space and therefore not the model (15).
The result in (24), however, is invariant to this choice of parametrization, because it

depends only on β(V ar(β′yt))
−1β′, which is invariant under the transformation β → βκ for

nay full rank matrix κ.

3.1 Optimizing the Sharpe ratio for the CVAR

We define the (squared) Sharpe ratio after h periods as

Sh(η) =
[Et{η′(yt+h − yt)}]2
V art(η′(yt+h − yt))

=
(η′µt,h)

2

η′Σhη
. (30)

Theorem 4 Under Assumptions 1 and 2, the portfolio which maximizes the Sharpe ratio
after h periods and its limit are given, up to a constant factor, by

η̆h = Σ−1h µt,h → −βΓ−1(β′yt − ξ). (31)

The maximizing cointegrating portfolio and its limit are given up to a constant factor by

η̆h,coint = β(β′Σhβ)−1β′µt,h → −βΓ−1(β′yt − ξ). (32)
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3.2 Regression results

The analysis above shows how to determine the optimal portfolios if the parameters and
hence the conditional mean and variance are known. In practice one would have to estimate
the parameters. This can be done by either using the Gaussian maximum likelihood estima-
tors of the CVAR or by simply running suitable regressions. We next give the asymptotic
properties of the product moments involved in these regressions.

Theorem 5 Let yt, t = 1, . . . , T, be generated by (10) and assume that Assumptions 1 and
2 hold.
Let (yt+h − yt|1, yt, yt−1) be the residual of a regression of yt+h − yt on (1, yt, yt−1), then

ShT = (T − h)−1
T−h∑
t=1

(yt+h − yt|1, yt, yt−1)(yt+h − yt|1, yt, yt−1)′
a.s.→ Σh, T →∞. (33)

Hence S−1hT en1/e
′
n1S

−1
hT en1 is a consistent estimator of the optimal h period hedging portfolio.

Let similarly (yt|1) = yt − ȳT , and

ST = T−1
T∑
t=1

(yt|1)(yt|1)′, (34)

then
β′STβ

a.s.→ Γ, and S−1T
P→ βΓ−1β′. (35)

Hence S−1T en1/e
′
n1S

−1
T en1 is a consistent estimator of the limiting (h → ∞) optimal hedging

portfolio.

4 Optimal hedging in the CVAR with martingale difference het-
eroscedastic errors

We now formulate a more general set of assumptions for the error term which allows for
heteroscedasticity, and replace Assumption 2 by the weaker Assumption 3.

Assumption 3 The innovations, εt, form a martingale difference sequence with respect to
a filtration Ft,t = . . . ,−1, 0, 1, . . . , and satisfy

Et(εt+1) = 0, E|εt|4 ≤ c <∞, (36)

and for Ωt = Et−1εtε
′
t we assume

T−1
T∑
t=1

Ωt+1
a.s.→ Ω > 0. (37)

Thus the volatility Ωt is not constant, but the time verage converges almost surely. Under
Assumption 3, yt is nonstationary, but both ∆yt and β′yt are nonstationary too, due to the
variation of the volatility Ωt, and V art(β′yt+h) does not necessarily converge for h → ∞.
Thus the role of cointegration is not so simple for heteroscedastic errors.
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We first note that under Assumption 3 we can define the general linear process zt =∑∞
i=0 φ

′
iεt−i, for coeffi cients which satisfy

∑∞
i=0 |φi| <∞. This has autocovariance function

γj = Cov(zt, zt+j) = E
∞∑
i=0

φ′iΩt−iφi+j,

and by averaging for 1 ≤ j ≤ h we get

γ̄h = h−1
h∑
j=1

Cov(zt, zt+j)→
∞∑
i=0

φ′iΩφi+j, for h→∞. (38)

Thus Ω from (37) does not in general play a role in the autocovariance function, only in
the limit of the average autocovariance function.
These processes are also studied by Hannan and Heyde (1972, Theorem 1), who proved

that if Assumption 3 holds1 and
∑∞

i=0 |φ′i| <∞, then for j ≥ 0,

z̄T = T−1
T∑
t=1

zt
a.s.→ 0, γ̂j = T−1

T∑
t=1

(zt − z̄T )(zt+j − z̄T )′
P→

∞∑
i=0

φ′iΩφi+j = lim
h→∞

γ̄h.

(39)
Thus, the emprical autocovariance function of zt does not converge to the theoretical au-

tocovariance function, but to a limit of an average of the theoretical autocovariance function,
see (38).
Therefore the role of cointegration is not the same as for homogeneous conditional vari-

ances. To discuss this we define

µt,h = Et(yt+h − yt), Σt,h = V art(yt+h − yt), Σt,h = h−1
h∑
j=1

Σt,j.

Theorem 6 Let yt be given by model (10) and let Assumption 1 and 3 hold.
Then for some Γ̄ > 0,

β′Σt,hβ
P→ βΓβ′ and Σ

−1
t,h

P→ βΓ
−1
β′. (40)

The portfolio minimizing η′Σt,hη under the constraint η′e1 = 1 and its limit are given by

Σ
−1
t,he1/e

′
1Σ
−1
t,he1

P→ βΓβ′e1/e
′
1βΓβ′e1, for h→∞. (41)

Thus, if we use the average conditional variance, Σt,h, to measure risk, instead of the condi-
tional variance itself, Σt,h, the results of Theorem 2 hold.

We next give an analysis of the regression approach outlined in Section 3.2 and prove the
analogue of Theorem 5.

1The condition (6) of Hannan and Heide (1972) assumes that there is a random variable X with E|X|2 <
∞, such that P (|εt| ≥ u) ≤ cP (|X| ≥ u) for all t, u ≥ 0 and some c. This is implied by our condition
E(|εt|4) ≤ c <∞, using a random variable with distribution function F (x) = (1− c/x4)+.
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Theorem 7 Let yt, t = 1, . . . , T, be generated by (10) and let Assumptions 1 and 3 hold.
Let (yt+h − yt|1, yt, yt−1) be the residual of a regression of yt+h − yt on (1, yt, yt−1), then the
residual sum of squares, see (33), satisfies

ShT
P→ Σt,h, T →∞. (42)

Hence the portfolio S−1hT en1/e
′
n1S

−1
hT en1 is a consistent estimator of the optimal portfolio if we

use the average variance, Σt,h, as risk measure.
Let ST be the residual sum of squares of a regression of yt on a constant, see (34), then

β′STβ
P→ Γ and S−1T

P→ βΓ
−1
β′. (43)

Hence S−1T en1/e
′
n1S

−1
T en1 is a consistent estimator of the limiting (h → ∞) optimal hedging

portfolio, if we use the average variance Σt,h as risk measure.

5 Empirical example
Consider the situation that a producer of electricity enters an agreement to deliver to cus-
tomers two years from today one MWh of electricity every day of the year. Therefore she/he
sells to the customers, today at the price pt, the right to having delivered one MWh of elec-
tricity in two years, that is, a two year forward contract in electricity. The seller is worried
about the risk due to changing fuel prices and decides to hedge these risks by buying two
year futures in the price of fuels. The problem is which amounts, the hedge ratios, should
be bought of the futures to hedge optimally, in the sense of smallest variance, the risk due
to the variation of fuel prices. Note that instead of holding the first asset, we are selling
it and buying the hedging assets, but that is just a matter of a change of sign. A detailed
analysis of some aspects of the electricity market in Europe, using cointegration analysis,
can be found in Bosco, Parisio, Pelagatti, and Baldi (2010) and Mohammadi (2009).
Above we have developed a theory for this situation under the assumption that we have

a constant parameter model, which describes the data well and for which we can assume
that the model parameters remain fixed in the entire period. The model describes the
cointegration relation between electricity and the fuels. We now want to apply this theory
to a set of data, and show how in this particular case, the optimal hedge ratios and its risk
change with h.
We take Dutch electricity prices for trades for two year ahead forward contracts for

electricity, pt, and two year futures prices for coalt, gast and CO2t (CO2 is the Euro-
pean Emission Allowances for carbon dioxide) which are main determinants of the price
of electricity, denoted fuels below. The data is from Datastream. We model these variables
yt = (pt, coalt, gast, CO2t)

′ using a cointegration model with two lags of the form

∆yt = α(β′yt−1 − ξ) + Ξ∆yt−1 + εt,

where εt, t = 1, . . . , T , are independent identically distributed (0,Ω). Note that in order to
interpret a cointegrating relation as a portfolio, we model the prices, not the log prices. We
summarize the analysis as follows.
The time series of the data are presented in Figure 1 and consists of daily observations

for 2009. We fit a CVAR with two lags and we need a few dummy variables to account for
outliers at observations (62, 24, 54, 116)
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Figure 1: The daily prices of a two year forward contract for delivery of electricity and the
prices of coal, gas and CO2 permits

Test for cointegrating rank
r Eig.Value Trace Frac95 P-Value
0 0.136 62.475 53.945 0.006
1 0.055 24.899 35.070 0.411
2 0.028 10.473 20.164 0.600
3 0.012 3.153 9.142 0.562

8 abs(roots) of companion matrix for r = 1
1, 1, 1, 0.87, 0.25, 0.069, 0.066, 0.066

Table 1: The tests for rank indicate that r = 0 can be rejected (p-value 0.006), and that
r = 1 looks acceptable (p-value 0.411). The absolute value of the roots of the companion
matrix are three imposed unit roots for r = 1 and the next largest is 0.72.

We estimate the model using the Gaussian maximum likelihood procedure, Johansen
(1988), and the calculations are performed using the software CATS in RATS, Dennis (2006).
We find that a model with two lags is a reasonable description of the data and we first

test for the number of cointegrating relations. The test for rank is given in Table 1 together
with the absolute value of the roots of the companion matrix when r = 1. One finds therefore
three unit roots, and the remaining roots are well within the unit disc.
The cointegrating relation is given below together with the adjustment coeffi cients. It

is seen that the coeffi cient to coal and the constant term are not significant, and that all
variables are adjusting to the cointegrating relations except the price of CO2 permits with
a t-value of −0.852.

β′y = elec.− 0.033
[t=−0.434]

coal −0.987
[t=−5.306]

gas− 1.145
[t=−8.158]

CO2 + 0.004
[t=0.691]

α′ = (−0.194
[t=−5.147]

, −0.117
[t=−2.100]

, −0.048
[t=−2.399]

, − 0.020
[t=−0.852]

),

The estimated cointegrating relation is plotted in Figure 2, and the risk of the optimal
portfolio compared to the stationary portfolio is given in Figure 3. Note that using the
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Figure 2: β′y = elec.− 0.033
[t=−0.434]

coal −0.987
[t=−5.306]

gas− 1.145
[t=−8.158]

CO2 + 0.004
[t=0.691]

Risk of stationary and optimal portfolio
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Figure 3: We plot the risk of the stationary portfolio V art(β′yt+h) = β′Σhβ, (– —) which
converges to Γ = 0.987 with an exponential rate, and the optimal risk V art(η∗′h yt+h) =
η∗′h Σhη

∗
h, (· · · · · · ) which converges to Γ like h−1. The unhedged risk (not plotted) for asset

one is Σh11 ≈ 0.35 + 0.58(h− 1), which goes from 0.35 to 13.73 for h = 24.

cointegrating relation as a hedging portfolio has a much greater risk than the optimal hedging
portfolio. The unhedged risk grows linearly from 0.35 (h = 1) to 13.73 (h = 24), whereas
the optimally hedged risk grows from 0.13 (h = 1) but stays below the limit Γ = 0.987.

6 Conclusion
We have analyzed the role of cointegration for hedging under the assumption that asset prices
are driven by a CVAR with stationary martingale difference errors with constant volatility.
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We have found the optimal hedging portfolio and maximum Sharpe ratio portfolio and
compared them with the unhedged portfolio for horizon h.
We find that, due to the nonstationarity of the asset prices, there is a substantial gain in

risk by hedging, especially for longer horizons. There is no simple comparison between the
expected return of the hedged and unhedged portfolio. Thus the main advantage of hedging
is the reduction of the risk. The minimum variance optimal hedging portfolio does not take
into account the expected return, and we therefore also analyze the maximum Sharpe ratio
portfolio, which balances the expected return and risk.
For long horizons, the optimal portfolio in both cases approaches a cointegrating relation,

which we find explicitly together with a formula for the expected return and risk.
If we allow for some degree of volatility, the same results can not be proved, unless

we replace the conditional variance of the returns by the average conditional variance as a
measure for risk.
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7 Appendix
Proof of Lemma 1. We use β̄⊥ = β⊥(β′⊥β⊥)−1and find

Θ−1h = (β, h−1/2β̄⊥)

(
β′Θhβ h−1/2β′Θhβ̄⊥

h−1/2β̄′⊥Θhβ h−1β̄′⊥Θhβ̄⊥

)−1
(β, h−1/2β̄⊥)′

= (β, h−1/2β̄⊥)

(
β′Ψhβ h−1/2β′Ψhβ̄⊥

h−1/2β̄′⊥Ψhβ Φh + h−1β̄′⊥Ψhβ̄⊥

)−1
(β, h−1/2β̄⊥)′

P→ (β, 0)

(
Γ 0
0 Φ

)−1
(β, 0)′ = βΓ−1β′.

Proof of Theorem 1. For model (15) it is seen that for ρ = Ir + β′α,

α′⊥yt+h = α′⊥yt + α′⊥

h−1∑
i=0

εt+h−i,

β′yt+h − ξ = ρ(β′yt+h−1 − ξ) + β′εt+h = · · · = ρh(β′yt − ξ) +
h−1∑
i=0

ρiβ′εt+h−i.

We combine these results using the identity

In = β⊥(α′⊥β⊥)−1α′⊥ + α(β′α)−1β′ = C + α(β′α)−1β′, (44)

and find

yt+h − yt = Cyt+h + α(β′α)−1β′yt+h − yt

= C

h−1∑
i=0

εt+h−i + Cyt − yt + α(β′α)−1{ξ + ρh(β′yt − ξ) +

h−1∑
i=0

ρiβ′εt+h−i},
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which reduces to (16) using (44). We then find the conditional mean (17) and conditional
variance (18). The result (19) follows immediately and (20) follows from Lemma 1.

Proof of Theorem 2. Proof of (22) and (23): We find from equation (10) that

µt,1 = Et(∆yt+1) = α(β′yt − ξ) + Ξ∆yt, Σ1 = Ω,

and the optimal hedging portfolio is η∗1 = (1,−Ω12Ω
−1
22 ), see (14), which proves (22) and (23).

The companion form: The model with two lags (10) can be expressed in companion form
as (

∆yt
∆yt−1

)
=

(
α Ξ

0n×r In

)(
β In

0n×r −In

)′(
yt−1
yt−2

)
+

(
−αξ + εt

0n

)
,

which we formulate as a lag one model for the stacked process ỹt = (y′t, y
′
t−1)

′ and errors
ε̃t = (ε′t, 0

′
n)′

∆ỹt = α̃(β̃′ỹt−1 − ξ̃) + ε̃t,

where we use the notation

α̃ =

(
α Ξ

0n×r In

)
, β̃ =

(
β In

0n×r −In

)
, ξ̃ =

(
ξ
0n

)
, Ω̃ =

(
Ω 0n×n

0n×n 0n×n

)
.

We then find for C = β⊥(α′⊥(In − Ξ)β⊥)−1α′⊥, see Assumption 1, the derived parameters

α̃⊥ =

(
α⊥
−Ξ′α⊥

)
, β̃⊥ =

(
β⊥
β⊥

)
, C̃ =

(
C −ΞC
C −ΞC

)
, ρ̃ =

(
Ir + β′α β′Ξ

α Ξ

)
.

Assumption 1 implies that ρ̃h converges exponentially to zero for h→∞.
The results (17) and (18) hold for the process ỹt by adding a tilde on all parameters,

Σ̃h = C̃
h−1∑
i=0

Ω̃C̃ ′ + α̃(β̃′α̃)−1(
h−1∑
i=0

ρ̃iβ̃′Ω̃β̃ρ̃′i)(α̃′β̃)−1α̃′ (45)

+ C̃
h−1∑
i=0

Ω̃β̃ρ̃′i(α̃′β̃)−1α̃′ + α̃(β̃′α̃)−1
h−1∑
i=0

ρ̃iβ̃′Ω̃C̃ ′,

µ̃t,h = α̃(β̃′α̃)−1(ρ̃h − Ir+n)(β̃′ỹt − ξ̃), (46)

The conditional mean and variance of yt+h − yt are then µt,h = (In, 0n×n)µ̃t,h and Σh =
(In, 0n×n)Σ̃h(In, 0n×n)′.
Proof of (24): It is seen from (45) that Σh = hCΩC ′ + Ψh, for some Ψh which is

convergent. We use the identity β′(In, 0n×n) = (Ir, 0r×n)β̃′ to find

V art(β
′yt+h) = β′Ψhβ = (Ir, 0r×n)

h−1∑
i=0

ρ̃iβ̃′Ω̃β̃ρ̃′i(Ir, 0r×n)′

→ (Ir, 0r×n)
∞∑
i=0

ρ̃iβ̃′Ω̃β̃ρ̃′i(Ir, 0r×n)′ = (Ir, 0r×n)V ar

(
β′yt
∆yt

)
= V ar(β′yt) = Γ.
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It follows from Lemma 1 that
Σ−1h → βΓ−1β′,

such that the optimal hedging portfolio as given in (13) has limit

η∗h = Σ−1h en1/e
′
n1Σ

−1
h en1 → βΓ−1β′en1/e

′
n1βΓ−1β′en1, for h→∞.

Using the normalization (21) we find e′n1β = (1, 0′r−1), Γ
−1β′en1 = (Γ11,Γ12)′ and e′n1⊥βΓ−1β′en1 =

γ1Γ
11 + γ2Γ

21, such that

e′n1⊥βΓ−1β′en1/e
′
n1βΓ−1β′en1 = γ1 + γ2Γ

21(Γ11)−1 = γ1 − γ2Γ−122 Γ21,

see (14), and therefore we find (24).
The proof of (25), (26) and (27): Using β′(In, 0n×n) = (Ir, 0r×n)β̃′, the limits are

η∗′h µt,h → (1,Γ12/Γ11)(β′yt − ξ) = (1,−Γ12Γ
−1
22 )(β′yt − ξ),

η∗′h Σ−1h η∗h = 1/e′1Σ
−1
h e1 → (Γ11)−1 = Γ11 − Γ12Γ

−1
22 Γ21.

Proof of Theorem 3. A cointegrating portfolio has the form βκ for some κ ∈ Rr. The
conditional variance of β′yt+h is β′Σhβ, and hence the optimal cointegrating portfolio is

β(β′Σhβ)−1β′e1n
e′1nβ(β′Σhβ)−1β′e1n

→ βΓ−1β′e1n
e′1nβΓ−1β′e1n

,

which is the same as in (24). Hence the results follow.

Proof of Theorem 4. Maximizing the Sharpe ratio is equivalent to minimizing the variance
η′Σhη subject to the constraint η′µt,h = 1, and the optimizing portfolio and its limit are
therefore given by any portfolio proportional to

Σ−1h µt,h → −βΓ−1β′(In, 0n×n)α̃(β̃′α̃)−1(β̃′ỹt − ξ̃).

Using β′(In, 0n×n) = (Ir, 0r×n)β̃′ we find the limit

−βΓ−1(Ir, 0r×n)(β̃′ỹt − ξ̃) = −βΓ−1(β′yt − ξ).

If we restrict the portfolio to be stationary η = βκ, κ ∈ Rr, we find

(η′µt,h)
2

η′Σhη
=

(κ′β′µt,h)
2

κ′β′Σhβκ
,

such that for the optimal κ̆ we find

η̆h,coint = βκ̆ = β(β′Σhβ)−1β′µt,h

→ −βΓ−1β′(In, 0n×n)α̃(β̃′α̃)−1(β̃′ỹt − ξ̃) = −βΓ−1(β′yt − ξ).
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Proof of Theorem 5. Proof of (33): We find from the representation (16) applied to the
stacked process ỹt, multiplying by (In, 0n×n), that

yt+h − yt =

h−1∑
i=0

Cεt+h−i + (In, 0n×n)α̃(β̃′α̃)−1
h−1∑
i=0

ρ̃iβ̃′ε̃t+h−i (47)

+ (In, 0n×n)α̃(β̃′α̃)−1(ρ̃h − Ir)(β̃′ỹt − ξ̃).

It is seen that regressing on yt, yt−1, and a constant, eliminates the last term, and we
note that the first two terms only depend on εt+1, . . . , εt+h, which are uncorrelated with
yt, yt−1, because εt form a martingale difference sequence. Thus, correcting for yt, yt−1 and a
constant, we find the residuals (yt+h − yt|1, yt, yt−1) and their sum of squares has the same
limit as the sum of squares of the first two terms.
The behavior of such product moments under stationary martinale difference assumptions

with constant velocity for εt, were studied by Hannan and Heyde (1972, Theorem 1). They
considered a general linear process of the form zt =

∑∞
i=0 φ

′
iεt−i, for coeffi cients which satisfy∑∞

i=0 |φ′i| <∞ and εt which satisfy Assumption 2. They define the empirical and theoretical
autocovariance functions for j ≥ 0

γ̂j = T−1
T−j∑
t=1

(zt − z̄)(zt+j − z̄)′, (48)

γj =
∞∑
i=0

φ′iΩφi+j = Cov(zt, zt+j). (49)

They then prove that
z̄T

a.s.→ 0, and γ̂j
a.s.→ γj. (50)

We apply these results to the processes εt+1, . . . , εt+h in (47) under Assumption 2, and find
that ShT from (33) converges almost surely to Σh.
Proof of (35): From (47) we find the representation

yt − y0 = C
t−1∑
i=0

εt−i + (In, 0n×n)α̃(β̃′α̃)−1(
t−1∑
i=0

ρ̃iβ̃′ε̃t−i) (51)

+ (In, 0n×n)α̃(β̃′α̃)−1(ρ̃t − Ir)(β̃′ỹ0 − ξ̃).

Regressing on a constant the last term vanishes for T →∞. The first term is a martingale
and T−1/2

∑[T.]
t=1 εt

D→ W (.), where W is Brownian motion, see Brown (1971, Theorem 3).
This implies that

T−1ST = T−1C(

t∑
i=1

εi|1)(

t∑
i=1

εi|1)′C ′ + oP (1)

D→ C

∫ 1

0

(W (u)− W̄ )(W (u)− W̄ )′duC ′,
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where W̄ =
∫ 1
0
W (u)du. In the second term we can replace (

∑t−1
i=0 ρ̃

iβ̃′ε̃t−i|1) by
∑∞

i=0 ρ̃
iβ̃′ε̃t−i,

and find from (50) that β′STβ
a.s.→ V ar(β′yt) = Γ. Finally we find that β′ST β̄⊥ = OP (1) and

we therefore get from Lemma 1 that S−1T
P→ βΓ−1β′.

Proof of Theorem 6. Proof of (42): We find from (47), using β′(In, 0n×n) = (Ir, 0rn)β̃′,
that

β′Σt,jβ = (Ir, 0r×n)Et

j−1∑
i=0

ρ̃iβ̃′Ω̃t+j−iβ̃ρ̃
i′(Ir, 0r×n)′.

Taking average for j = 1, . . . , h we find

β′Σt,hβ = (Ir, 0r×n)Et

h−1∑
i=0

ρ̃iβ̃′[h−1
h∑

j=i+1

(
Ωt+j−i 0n×n
0n×n 0n×n

)
]β̃ρ̃i′(Ir, 0r×n)′

P→ (Ir, 0r×n)
∞∑
i=0

ρ̃iβ̃′
(

Ω 0n×n
0n×n 0n×n

)
β̃ρ̃i′(Ir, 0r×n)′ = Γ,

say. We next consider h−1β̄′⊥Σt,hβ̄⊥ and find from (47) that the first term is dominating.
Thus

h−1β̄′⊥Σt,hβ̄⊥ = β̄′⊥CEt{h−2
h∑
j=1

j[j−1
j−1∑
i=0

Ωt+j−i]}C ′β̄⊥ + oP (1)
P→ 1

2
β̄′⊥CΩC ′β̄⊥.

Finally by the same methods we find that β′Σt,hβ̄⊥ = OP (1) because the dominating term
vanishes by multiplication by β and the remaining are bounded because ρ̃i is decreasing
exponentially. Finally we find from Lemma 1 that Σ

−1
t,h

P→ βΓ
−1
β′.

Proof of Theorem 7. Proof of (42): From the representation (47) we find that only the
first two terms are relevant and we consider the different terms separately. They only involve
the errors εt+1, . . . , εt+h and by applying the result of Hannan and Heyde (1972) given in
(39) we find (42).
Proof of (43): We apply the representation (51). In order to apply the result (39)

we define the linear process zt =
∑∞

i=0 ρ̃
iβ̃′ε̃t−i =

∑t−1
i=0 ρ̃

iβ̃′ε̃t−i +
∑∞

i=t ρ̃
iβ̃′ε̃t−i, where the

remainder is evaluated as

E|
∞∑
i=t

ρ̃iβ̃′ε̃t−i| ≤ c

∞∑
i=t

ρ̃i ≤ c|ρ̃|t → 0,

so we shall neglect it. Then from (39) we find

β′STβ = T−1
T∑
t=1

(Ir, 0r×n)

t−1∑
i=0

ρ̃iβ̃′ε̃t−i

t−1∑
j=0

ε̃′t−jβ̃ρ̃
j′(Ir, 0r×n)′

= (Ir, 0r×n)T−1
T∑
t=1

ztz
′
t(Ir, 0r×n)′ + oP (1)

P→ (Ir, 0r×n)
∞∑
i=0

ρ̃iβ̃′Ω̃β̃ρ̃i′(Ir, 0r×n)′ = Γ,
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say. We next consider

T−1β̄′⊥ST β̄⊥ = β̄′⊥CT
−1

T∑
t=1

(T−1/2
t−1∑
i=0

εt−i|1)(T−1/2
t−1∑
j=0

ε′t−j|1)′C ′β̄⊥

D→ β̄′⊥C

∫ 1

0

(W (u)− W̄ )(W (u)− W̄ )′duC ′β̄⊥.

The same methods give β′ST β̄⊥ = OP (1) and we can apply Lemma 1to show that S−1T
P→

βΓ
−1
β′.
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